• The solubility of a substance is the maximum amount of solute that dissolves in a given volume of solvent.

  • It is important to know the solubility of substance in various liquids, quite often quoted the maximum solubility of salts in water, but often quoted, not as molarity, but in g salt /100 g of water and plotted in graphs known as solubility curves.

  • This is the maximum concentration possible for a given solute and solvent.

  • For more on solubility see Important formulae of compounds, salt solubility and water of crystallisation

  • Misconceptions

  • Revise section 7. moles and mass before proceeding in this section 11 and eventually you may need to be familiar with the use of the apparatus illustrated above, some of which give great accuracy when dealing with solutions and some do not.

  • It is very useful to be know exactly how much of a dissolved substance is present in a solution of particular concentration or volume of a solution.
  • Reminders: The dissolved substance is called the solute and the liquid dissolving it is the solvent.
  • (b) Measures of concentration and simple calculations of molarity
    (b)(i) Concentration in terms of mass of solute per unit volume of solution
    (b)(ii) Concentration in terms of moles of solute per unit volume of solution
    There are more questions involving molarity in section 12. on titrations
    and section 14.3 on dilution calculations and
    (c) APPENDIX 1 on SOLUBILITY and concentration calculations
    How do you find out how soluble a substance is in water?
    Reminder: solute + solvent > solution
    i.e. the solute is what dissolves, the solvent is what dissolves it and the resulting homogeneous mixture is the solution.
    The solubility of a substance is the maximum amount of it that will dissolve in a given volume of solvent e.g. water.
    The resulting solution is known as a saturated solution, because no more solute will dissolve in the solvent.
    Solubility can be measured and expressed in with different concentration units e.g. g/100cm3, g/dm3 and molarity (mol/dm3).
    Importer for contacts 1 5 1000. Solubility can also be expressed as mass of solute per mass of water e.g. g/100g of water.
    You can determine solubility by titration if the solute reacts with a suitable reagent e.g. acid - alkali titration and it is especially suitable for substances of quite low solubility in water e.g. calcium hydroxide solution (alkaline limewater) can be titrated with standard hydrochloric acid solution.
    However, many substances like salts are very soluble in water and a simple evaporation method will do which is described below e.g. for a thermally stable salt like sodium chloride.
    (1) A saturated solution is prepared by mixing the salt with 25cm3 of water until no more dissolves at room temperature.
    (2) The solution is filtered to make sure no undissolved salt crystals contaminate the saturated solution.
    (3) Next, an evaporating dish (basin) is accurately weighed. Then, accurately pipette 10 cm3 of the saturated salt solution into the basin and reweigh the dish and contents.
    By using a pipette, its possible to express the solubility in two different units.
    (4) The basin and solution are carefully heated to evaporate the water.
    (5) When you seem to have dry salt crystals, you let the basin cool and reweigh it.
    (6) The basin is then gently heated again and then cooled and weighed again.
    This is repeated until the weight of the dish and salt is constant, proving that all the water is evaporated
    By subtracting the original weight of the dish from the final weight you get the mass of salt dissolved in the volume or mass of saturated salt solution you started with.
    You can repeat the experiment to obtain a more accurate and reliable result.
    (7) Calculations
    By using a pipette it is possible to calculate the solubility in two ways, expressed as two quite different units.
    Suppose the dish weighed 95.6g.
    With the 10.0 cm3 of salt solution in weighed 107.7g
    After evaporation of the water the dish weighed 96.5g
    Mass of 10.0 cm3 salt solution = 107.7 - 95.6 = 12.1g
    Mass of salt in 10 cm3 of salt solution = 96.5 - 95.6 = 0.9g
    Mass of water evaporated = 107.7 - 96.5 = 11.2g
    (a) Expressing the solubility in grams salt per 100 g of water
    From the mass data above 0.9g of salt dissolved in 11.2g of water
    Therefore X g of salt dissolves in 100g of water, X = 100 x 0.9 / 11.2 = 8.0
    Therefore the solubility of the salt = 8.0g/100g water
    You can scale this up to 80.0g/1000g H2O, or calculate how much salt would dissolve in any given mass of water.
    You can also express the solubility as g salt/100g of solution.
    Folderssynchronizer 5 0 G
    0.9g salt is dissolved in 12.1g of solution, X g in 100g of solution
    Therefore X = 100 x 0.9 / 12.1 = 7.4, so solubility = 7.4g/100g solution
    These calculations do not require the original salt solution to be pipetted. You can just measure out approximately 10cm3 of the salt solution with 10cm3 measuring cylinder, and do the experiment and these calculations in the exactly the same way.
    (b) However, if you know the exact volume of salt solution and the mass dissolved in it, then you can calculate the concentration in g/dm3, and if you know the formula mass of the salt, you can calculate the molarity of the solution.
    From part (a) we have 0.9g of salt in 10.0 cm3
    Therefore X g will dissolve in 1000cm3 solution, X = 1000 x 0.9 / 10 = 90g/1000 cm3
    Solubility of salt = 90g/dm3
    Suppose the formula mass of the salt was 200, calculate the molarity of the saturated solution.
    moles salt = mass / formula mass = 90/200 = 0.45 moles
    Therefore solubility of saturated salt solution in terms of molarity = 0.45 mol/dm3
    NOTE Solubility varies with temperature, see Gas and salt solubility in water and solubility curves, and it usually (but not always) increases with increase in temperature. So, in the experiment described above, the temperature of the saturated solution should be noted, or perhaps controlled to be saturated at 20oC or 25oC.
    (d) APPENDIX 2 - How to make up a standard solution - a solution of precisely known concentration

    The method and procedure of how to make up a standard solution of a soluble solid e.g. a salt, is fully described.

    Procedure for making up a standard solution of known molarity

    The method and procedure of how to make up a standard solution of a soluble solid e.g. a salt, is fully described
    Suppose you want to make up 250 cm3 of a salt solution of concentration 20g/dm3 (20g/litre, 20g/1000cm3, 20g/1000ml).
    Example 1.
    c = m / v, m = c x v, m = 20 x 250 / 1000 = 5g
    so 5g of the salt is needed to be made up into an aqueous solution of exactly 250.0 cm3.
    The procedure to is described in detail example 2. below.
    To prepare a solution of known molarity, you need to work backwards from the volume required and the molarity to see how much solid you need.
    Example 2.
    Suppose you want to make up 250cm3 of a sodium chloride solution of concentration 0.20 moldm-3
    Preliminary calculation:
    From molarity formula (on the right): moles = molarity (mol/dm3) x volume (dm3)
    and volume in cm3 / 1000 = dm3
    moles NaCl needed = 0.20 x 250/1000 = 0.20 x 0.25 = 0.05 mol NaCl
    Atomic masses: Na =23 and Cl = 35.5, so molar mass of NaCl = 23 + 35.5 = 58.5
    From basic mole formula: mass of NaCl needed = mol NaCl x formula mass NaCl
    mass of NaCl needed = 0.05 x 58.5 = 2.925 g (which is ok if you have a 3 decimal place balance!), so

    Folderssynchronizer 5 0 G M

    2.295g of pure NaCl salt is needed to made up 250.0 cm3 of solution with a precise concentration of 0.20 mol/dm3.
    Procedure to make the standard solution i.e. one of known concentration of solid (in this case)
    An accurate one pan electronic balanced is set to zero (preferably with an accuracy of two decimal places). A beaker is placed on the balance and the reading noted (ignore the figures on the diagram).
    Very carefully, with a spatula (not shown), salt crystals are added to the beaker until it weighs exactly 2.925 grams more than the beaker. This can be a very fiddly procedure if you want exactly 2.925g of salt.
    Pure water (distilled/deionised) is then added to the beaker to completely dissolve the salt and use of a stirring rod helps to speed up the process. The amount of water you add to the beaker should be much less than 250cm3 to allow for the transfer and rinsing of the solution into the standard volumetric flask using a 'squeezy' wash bottle!
    Eventually a clear solution of the salt should be seen, there should be no residual salt crystals at the bottom of the beaker or on the sides of the beaker. You can use the wash bottle to rinse down any crystals on the side of the beaker, but watch the volume you use.
    An accurately calibrated 250cm3 volumetric flask should be washed out and cleaned several times with pure water. Then, the whole of the solution in the beaker is transferred into the flask with the help of a funnel to avoid the risk of spillage. To make sure every drop of the salt solution ends up in the flask, a wash bottle of pure water is used to rinse out the beaker several times, AND rinse the stirring rod and the funnel too. This is to ensure nothing is lost in the transfer fro beaker to flask.
    Then, very carefully, the flask is topped up with pure water so the meniscus rests exactly on the 250.0cm3 calibration mark, a teat pipette is useful for the last few drops of water. The stopper is placed on and the flask carefully shaken quite a few times to ensure the salt solution is completely mixed up. Finally, check the meniscus lies on the calibration mark, in case another few drops are needed. Either way, the last drops of water should be added most carefully with a teat pipette.
    Job done!
    Note on standard solutions of acids and alkalis
    You can purchase standard solutions ready for use.

    Folderssynchronizer 5 0 Grams

    OR, a phial of concentrated acid or alkali, which you dilute into a specified volume to give a specific molarity.
    Apart from weighing out a solid, the procedure is the same as and , ensuring every drop from the phial is rinsed down the funnel into the calibrated volumetric flask.
    See dilution' calculations in section 14.3 dilution of solutions

    (e) Self-assessment Quizzes on molarity calculations:

    type in answer QUIZ on molarity or multiple choice QUIZ on molarity

    type in titration answer QUIZ or multiple choice titration QUIZ

    (good revision for A level students)

    See also Advanced level GCE-AS-A2 acid-alkali titration calculation questions

    Above is typical periodic table used in GCSE science-chemistry specifications in doing molarity calculations, and I've 'usually' used these values in my exemplar calculations to cover most syllabuses

    OTHER CALCULATION PAGES
    1. Molarity, volumes and solution concentrations (and diagrams of apparatus) (this page)

    Keywords: Quantitative chemistry calculations Help for problem solving in doing molarity calculations from given masses, volumes and molecular/formula masses. Practice revision questions on calculating molarity from mass, volume and formula mass data, using experiment data, making predictions. How do we define the concentration of a solution? How do we calculate concentration? What units do we use for concentration? What is molarity? How do we use moles to calculate the mass of a substance to make up a specific volume of a solution of specific concentration? All calculation methods are fully explained with fully worked out example questions. Online practice exam chemistry CALCULATIONS and solved problems for KS4 Science GCSE/IGCSE CHEMISTRY and basic starter chemical calculations for advanced level AS/A2/IB courses. These revision notes and practice questions on how to do molarity calculations in using solutions in chemistry and worked examples should prove useful for the new AQA, Edexcel and OCR GCSE (9–1) chemistry science courses.

    Folderssynchronizer 5 0 G Body

    definition of molarity calculations solution concentrations Revision KS4 Science revising definition of molarity calculations solution concentrations Additional Science Triple Award Science Separate Sciences Courses aid to definition of molarity calculations solution concentrations textbook revision GCSE/IGCSE/O level Chemistry definition of molarity calculations solution concentrations Information Study Notes for revising for AQA GCSE Science definition of molarity calculations solution concentrations, Edexcel GCSE Science/IGCSE Chemistry definition of molarity calculations solution concentrations & OCR 21st Century Science, OCR Gateway Science definition of molarity calculations solution concentrations WJEC gcse science chemistry definition of molarity calculations solution concentrations CEA/CEA gcse science chemistry O Level Chemistry (revise courses equal to US grade 8, grade 9 grade 10 definition of molarity calculations solution concentrations) A level Revision notes for GCE Advanced Subsidiary Level definition of molarity calculations solution concentrations AS Advanced Level A2 IB Revising definition of molarity calculations solution concentrations AQA GCE Chemistry OCR GCE Chemistry definition of molarity calculations solution concentrations Edexcel GCE Chemistry Salters Chemistry definition of molarity calculations solution concentrations CIE Chemistry definition of molarity calculations solution concentrations, WJEC GCE AS A2 Chemistry definition of molarity calculations solution concentrations, CCEA/CEA GCE AS A2 Chemistry revising definition of molarity calculations solution concentrations courses for pre-university students (equal to US grade 11 and grade 12 and AP Honours/honors level definition of molarity calculations solution concentrations revision guide to definition of molarity calculations solution concentrations, what are the units of molarity? how do you calculate molarity? practice questions on molarity, moles and molarity calculations, experiment to determine solubility in g/dm3 mol/dm3, calculating concentration in g/cm3, how to convert g/dm3 into molarity mol/dm3 or g/cm3, how to convert molarity in mol/dm3 into g/dm3 or g/cm3, gcse chemistry revision free detailed notes on molarity calculations for A level chemistry to help revise igcse chemistry igcse chemistry revision notes on molarity calculations for A level chemistry O level chemistry revision free detailed notes on molarity calculations for A level chemistry to help revise gcse chemistry free detailed notes on molarity calculations for A level chemistry to help revise O level chemistry free online website to help revise molarity calculations for A level chemistry for gcse chemistry free online website to help revise molarity calculations for A level chemistry for igcse chemistry free online website to help revise O level molarity calculations for A level chemistry how to succeed in questions on molarity calculations for A level chemistry for gcse chemistry how to succeed at igcse chemistry how to succeed at O level chemistry a good website for free questions on molarity calculations for A level chemistry to help to pass gcse chemistry questions on molarity calculations for A level chemistry a good website for free help to pass igcse chemistry with revision notes on molarity calculations for A level chemistry a good website for free help to pass O level chemistry

    Mathway

    Website content © Dr Phil Brown 2000+. All copyrights reserved on revision notes, images, quizzes, worksheets etc. Copying of website material is NOT permitted. Exam revision summaries & references to science course specifications are unofficial.